
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2526814

Secure Information Flow in a Multi-threaded Imperative Language

Article in Conference Record of the Annual ACM Symposium on Principles of Programming Languages · August 2002

DOI: 10.1145/268946.268975 · Source: CiteSeer

CITATIONS

399
READS

98

2 authors, including:

Geoffrey Seward Smith

Florida International University

82 PUBLICATIONS 4,434 CITATIONS

SEE PROFILE

All content following this page was uploaded by Geoffrey Seward Smith on 30 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2526814_Secure_Information_Flow_in_a_Multi-threaded_Imperative_Language?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2526814_Secure_Information_Flow_in_a_Multi-threaded_Imperative_Language?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Geoffrey-Smith-27?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Geoffrey-Smith-27?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Florida_International_University?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Geoffrey-Smith-27?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Geoffrey-Smith-27?enrichId=rgreq-eaa20d8439dff497e35336f7bfebeb14-XXX&enrichSource=Y292ZXJQYWdlOzI1MjY4MTQ7QVM6MTA2NTcyOTU3MDkzODg5QDE0MDI0MjAzODEyNTQ%3D&el=1_x_10&_esc=publicationCoverPdf

Secure Information Flow in a Multi�threaded Imperative Language

Geo�rey Smith

School of Computer Science

Florida International University

Miami� FL ������ USA

smithg�cs�fiu�edu

Dennis Volpano

Computer Science Department

Naval Postgraduate School

Monterey� CA ������ USA

volpano�cs�nps�navy�mil

Abstract

Previously� we developed a type system to ensure secure
information �ow in a sequential� imperative programming
language �VSI���� Program variables are classi�ed as ei�
ther high or low security	 intuitively� we wish to prevent
information from �owing from high variables to low vari�
ables� Here� we extend the analysis to deal with a multi�
threaded language� We show that the previous type system
is insu
cient to ensure a desirable security property called
noninterference� Noninterference basically means that the
�nal values of low variables are independent of the initial
values of high variables� By modifying the sequential type
system� we are able to guarantee noninterference for con�
current programs� Crucial to this result� however� is the use
of purely nondeterministic thread scheduling� Since imple�
menting such scheduling is problematic� we also show how
a more restrictive type system can guarantee noninterfer�
ence� given a more deterministic �and easily implementable�
scheduling policy� such as round�robin time slicing� Finally�
we consider the consequences of adding a clock to the lan�
guage�

� Introduction

The success of mobile code technologies depends in large
part on what kinds of security guarantees can be made for
clients executing the code� Among the concerns here is en�
suring that code respects a clients privacy� so that sensitive
information is not improperly disclosed� Current software
approaches to security address the issue of protecting pri�
vacy by introducing protection domains and access privi�
leges� The basic idea is to specify� via a security policy� a
set of privileges for a piece of code based on its digital sig�
nature� A check is then made for a certain access privilege
when the code attempts to cross a domain boundary� say
for example if it attempts to access the local �le system� If
the privilege has been granted� execution proceeds� Keep
in mind that the decision is made here against a security
policy for the codes signature� not the code itself� This is
the approach taken in the security architecture of the Java

To appear in the ��th ACM Symposium on Principles of
Programming Languages� San Diego� California� January
������ �����

Developers Kit �JDK� ��� �GMPS��� and in the extended
stack introspection proposal of �WBDF����

But suppose we can prove that a program satis�es a se�
cure information �ow property that guarantees that the pro�
gram respects private information� Then there is no need to
check at runtime whether the code has permission to read
private information	 we can simply trust it� since the prop�
erty guarantees that the information will not be improperly
disclosed� This is the approach taken in this paper� We are
interested in developing a type system for a concurrent pro�
gramming language and exploring the secure��ow properties
that can be shown to hold for all well�typed programs� With
such a type system� code can be type checked for secure��ow
violations just once� Code that type checks can be allowed
to run and access private information without any further
checks�� Type checking might be done by a clients security
architecture� Another way it might be done is at a code cer�
ti�cation site� For example� e�orts are underway at some
companies in the U�S� to �certify� the security of Java com�
pilation units used in electronic commerce servers� �It is
understandable why consumer con�dence is low here given
the rash of stolen credit card numbers despite the use of
encryption�� Such a site might apply a type checker as an
initial step in certifying code�

This paper continues our earlier work �VSI��� VS��b�
VS��a� on the relationship between typing� security proper�
ties� and semantics� but now in a concurrent setting� The
paper presents the following results�

�� We show that the type system of �VSI��� is no longer
su
cient to guarantee a desirable security property�
called noninterference� if we add threads to our lan�
guage� The noninterference property is intended to
assert that information cannot �ow from high vari�
ables to low variables	 basically� it says that the �nal
values of low variables are independent of the initial
values of high variables�

�� We show that the noninterference property can be re�
stored in a multi�threaded language by requiring the
guards of while loops to have type low and by re�
quiring while loops themselves to have type low cmd�
�Conditionals do not need to be restricted�� This is
the main result of the paper�

�� Crucial to the above result� however� is the use of
purely nondeterministic thread scheduling� It is not

�We do not mean to suggest that such a type system would address
all security concerns� Integrity properties� for instance� might well be
best handled by code signing�

�

clear how such scheduling can be implemented in prac�
tice� We show that with more deterministic schedul�
ing� such as round�robin time slicing �which is used in
the implementation of Java threads in Windows NT
����� the noninterference property does not hold� We
show that noninterference can be restored� regardless
of the scheduling policy used� by also requiring the
guards of conditionals to have type low�

�� We consider adding a clock to the language� We show
that unless the clock is given type high� noninterference
is not preserved�

The remainder of the paper is organized as follows� In
Section �� we give an example that shows that the type sys�
tem of �VSI��� is insu
cient to ensure noninterference in a
multi�threaded language� In Sections � and �� we formally
de�ne the semantics of our multi�threaded language and its
type system� Then� in Section �� we prove that the type sys�
tem guarantees the noninterference property� In Section ��
we explore how adding a clock to the language a�ects the
noninterference property� In Section �� we consider the con�
sequences of using a less nondeterministic �but more imple�
mentable� semantics of concurrency� In Section �� we discuss
some interactions among the noninterference property and
language semantics� Finally� in Section �� we discuss some
related work�

� The E�ect of Threads on Noninterference

Recently� the authors showed that a Denning�style secure�
�ow analysis of imperative programs can be formulated as a
type system �VSI���� For example� suppose that we wish to
support two security classes� L �low� and H �high�� Then
we can use these security classes as the types of program
variables� Thus� for variables x and y� we can say x � H to
indicate that x holds high�security information and y � L to
indicate that y holds low�security information� And then an
improper assignment like y �� x can be caught as a type
error� Note� however� that the opposite assignment x �� y
should be allowed	 to deal with this we introduce subtyping
into our type system and say that L � H� More subtly� the
type system must also guard against implicit information
�ows� as seen in a program like

if even�x� then y �� � else y �� ��

which indirectly copies the last bit of x into y� To deal
with such implicit �ows� the type system also classi�es pro�
gram commands as having either type H cmd or L cmd 	
intuitively� a command of type H cmd cannot transmit any
information to L variables and hence can safely be used in
the branches of a conditional whose guard has type H�

In �VSI���� it is shown that the type system ensures that
every well�typed program c satis�es a noninterference prop�
erty� which can be described as follows� suppose that � and
� are two memories that agree on all L variables and that c
can be run successfully starting from both � and �� yielding
�nal memories �� and ��� Then �� and �� also agree on all
L variables� Intuitively� this means that information cannot
�leak� from H variables to L variables� since the �nal val�
ues of L variables are independent of the initial values of H
variables�� Furthermore� programs can be checked automat�
ically for type correctness� by doing type inference �VS��b��

�It is possible� however� for information about H variables to leak
to an outside observer who can observe whether c halts� aborts� or
fails to terminate� or how long c takes to terminate� See �VS��a� for
some approaches to eliminating such covert information �ows�

However� the language considered in �VSI��� is sequen�
tial� while mobile programs �such as Java applets� are often
multi�threaded� For this reason� it is important to extend
our analysis to deal with a multi�threaded language and to
see how the noninterference property is a�ected by the pres�
ence of concurrency� This is the main goal of this paper�

We begin with an example that shows that the type sys�
tem of �VSI��� is no longer su
cient to ensure noninterfer�
ence if we extend our language with concurrent threads that
communicate via a shared memory� The program� which
consists of three threads� is given in Figure �� Assume that
PIN � H var and result � L var � Then each of the threads in
this program can be typed under the type system of �VSI����
�The typing gives trigger� and trigger� type H var � and
maintrigger and mask type L var ��

But� if the program is run in a memory where initially
maintrigger � �� trigger� � �� trigger� � �� result �
�� mask is a power a �� and PIN is an arbitrary natural num�
ber less twice mask� then� assuming that scheduling is fair
�i�e� each thread is scheduled in�nitely often�� the program
eventually halts with the value of PIN copied into result�
Thus the noninterference property is violated�

To restore the noninterference property in this concur�
rent setting� we impose two new restrictions on the typing
of while loops� we require that the guard of a while loop
have type L� and we require the while loop itself to get type
L cmd � The new restrictions succeed in ruling out the above
program�since trigger� and trigger� have type H� they
cannot be used in the guards of the while loops in threads
� and ��

In the next three sections� we develop these ideas pre�
cisely� proving that the new restrictions on while loops are
su
cient to restore the noninterference property for multi�
threaded programs�

� Syntax and Semantics

Threads are written in the simple imperative language�

�phrases� p ��� e j c

�expressions� e ��� x j n j e� � e� j
e� � e� j e� � e� j � � �

�commands� c ��� x �� e j c�	 c� j
if e then c� else c� j
while e do c

Metavariable x ranges over identi�ers and n over integer
literals� Integers are the only values	 we use � for false and
nonzero for true� Note that expressions are all pure �i�e�
they do not cause side e�ects� and total �i�e� they do not
contain partial operations like division��

The concurrent systems that we consider here consist
simply of a set of commands �the threads� that run concur�
rently	 we do not consider facilities for creating new threads�
Following the approach taken in Cli� Joness �o�� �Jon����
we model a system of threads with an object map O� which
is simply a �nite function from thread identi�ers ��� �� � � � �
to commands� In addition� there is a single global memory
�� shared by all threads� that maps identi�ers to integers�
�Note that in this simple context� we dont need to distin�
guish identi�ers from locations�� The only way that threads
can interact is via the shared memory�

In this paper� we assume for simplicity that expressions
are evaluated atomically� Thus we simply extend a memory
� in the obvious way to map expressions to integers� writing
��e� to denote the value of expression e in memory �� Note

�

� Thread ��

while mask �� � do
while trigger� � � do

�
result �� result � mask� �� bitwise �or�
trigger� �� ��
maintrigger �� maintrigger	��
if maintrigger � � then trigger� �� �

� Thread ��

while mask �� � do
while trigger� � � do

�
result �� result
 �mask� �� bitwise �and� with the complement of mask
trigger� �� ��
maintrigger �� maintrigger	��
if maintrigger � � then trigger� �� �

� Thread ��

while mask �� � do
maintrigger �� ��
if �PIN
 mask � � then

trigger� �� �
else

trigger� �� ��
while maintrigger �� � do

�
mask �� mask � ��

trigger� �� ��
trigger� �� �

Figure �� A multi�threaded program that leaks information

�

that ��e� is always de�ned� provided that every identi�er
occurring in e is in the domain of �� which will always be
the case if e is well typed�

As in Gunter �Gun���� we de�ne the semantics of com�
mands via transitions�

�update� x � dom���

�x �� e� ��
s
����x �� ��e��

�sequence� �c�� ��
s
����

�c�	 c�� ��
s
���c�� �

��

�c�� ��
s
���c��� �

��

�c�	 c�� ��
s
���c��	 c�� �

��

�branch� ��e� nonzero

�if e then c� else c�� ��
s
���c�� ��

��e� � �

�if e then c� else c�� ��
s
���c�� ��

�loop� ��e� � �

�while e do c� ��
s
���

��e� nonzero

�while e do c� ��
s
���c	while e do c� ��

These rules de�ne a transition relation
s
�� on con�gura�

tions� A con�guration is either a pair �c� �� or simply a
memory �� In the �rst case� c is the command yet to be
executed	 in the second case� the command has terminated�

yielding �nal memory �� We write
s
��

k
for the k�fold self

composition of
s
��� and

s
��

�

for the re�exive� transitive

closure of
s
���

Next we have two rules specifying the global transitions
that can be made by a system of threads�

�global� O��� � c

�c� ��
s
����

�O� ��
g
���O � �� ���

O��� � c

�c� ��
s
���c�� ���

�O� ��
g
���O�� �� c��� ���

The semantics� at the global level� is thus purely nondeter�
ministic� �At this point� we dont even require that schedul�
ing be fair�� How to implement this semantics is an open
question	 this will be discussed further in Sections � and ��

� The Type System

Here are the types used by our type system�

�data types� 	 ��� L j H
�phrase types�
 ��� 	 j 	 var j 	 cmd

For simplicity� we limit the security classes here to just L
and H	 it is possible to generalize to an arbitrary partial
order of security classes�

Our type system� whose rules are given in Figure �� al�
lows us to prove typing judgments of the form � � p �
 as
well as subtyping judgments of the form
� �
�� Here �
denotes an identi�er typing� which is a �nite function from
identi�ers to phrase types�

If � � c �
 for some
� then we say that c is well typed
under �� Also� if O��� is well typed under � for every � �
dom�O�� then we say that O is well typed under ��

As compared with the type system of �VSI���� the typ�
ings of while loops are here restricted in two ways� �rst�
the guard of a while loop must have type L� and second�
the while loop itself can only get type L cmd �

� Type Soundness

We begin with three lemmas that establish the key proper�
ties ensured by the type system	 these lemmas are then used
to prove that well�typed programs have the noninterference
property�

Lemma ��� �Simple Security� If � � e � L� then every
identi�er in e has class L�

Proof� By induction on the structure of e�

Lemma ��� �Con�nement� If � � c � H cmd� then every
identi�er assigned to in c has class H� and c is guaranteed to
terminate successfully from any memory � where dom��� �
dom����

Proof� By induction on the structure of c� and using the fact
that c cannot contain any while loops�

Lemma ��� �Subject Reduction� If � � c � 	 cmd and

�c� ��
s
���c�� ���� then � � c� � 	 cmd�

Proof� By induction on the structure of c�
If c is of the form c�	 c�� then it follows that � � c� �

	 cmd and � � c� � 	 cmd � �The argument for this is com�
plicated somewhat by the presence of subtyping�� If the
transition is by the second rule �sequence��

�c�� ��
s
���c��� �

��

�c�	 c�� ��
s
���c��	 c�� �

��

then by induction � � c�� � 	 cmd � and so by rule �compose�
� � c��	 c� � 	 cmd � If the transition is by the �rst rule
�sequence�� the argument is simpler�

If c is of the form while e do c�� then 	 must be L� and
we must have � � c� � L cmd � and so � � c�	while e do c� �
L cmd �

The case of if e then c� else c� is similar�

We also need a lemma about the execution of a sequential
composition�

Lemma ��� If �c�� ��
s
��

k
�c��� �

��� then �c�	 c�� ��
s
��

k

�c��	 c�� �
��� If �c�� ��

s
��

k
��� then �c�	 c�� ��

s
��

k
�c�� �

���

Proof� By induction on k�

De�nition ��� Given an identi�er typing �� we say that
memories � and � are equivalent� written ����� if �� ��
and � have the same domain and � and � agree on all L
identi�ers�

We also say that two commands are equivalent if this can
be shown from the following three rules�

�� If c � c�� then c��c
��

�� If c and d have type H cmd� then c��d�

�

�ident� ��x� �

� � x �

�int� � � n � 	

�r�val� � � e � 	 var
� � e � 	

�sum� � � e� � 	� � � e� � 	
� � e� � e� � 	

�assign� � � x � 	 var � � � e � 	
� � x �� e � 	 cmd

�compose� � � c� � 	 cmd � � � c� � 	 cmd
� � c�	 c� � 	 cmd

�if� � � e � 	� � � c� � 	 cmd � � � c� � 	 cmd
� � if e then c� else c� � 	 cmd

�while� � � e � L� � � c � L cmd
� � while e do c � L cmd

�base� L � H

�reflex�
 �

�cmd�� 	� � 	�
	� cmd � 	� cmd

�subtype� � � p �
��
� �
�
� � p �
�

Figure �� Typing and subtyping rules

�� If c��c
� and d��d

�� then c	 d��c
�	 d��

Finally� we extend equivalence to con�gurations by de�ning
�c� �����d� �� if c��d and �����

Why do we need a notion of equivalence on commands�
Well� we are trying to show that executing a command twice�
from two equivalent memories� leads to equivalent memories�
But to prove this property by induction on the number of
transitions� it is necessary to deal with the fact that the two
executions can proceed quite di�erently� because condition�
als with H guards need not follow the same branches in the
two executions� For this reason� we must prove a more gen�
eral property� roughly speaking� equivalent con�gurations
go to equivalent con�gurations�

Remark� The need for clause � in the above de�nition
can be seen from the following example� Suppose x � H�
d � L cmd � and ����� If � and � disagree about the value
of x� then the command �if x � � then c� else c��	 d could
go to �c�	 d� �� under � and go to �c�	 d� �� under �� Thus we
need c�	 d��c�	 d� but these dont have type H cmd � End
of Remark�

Theorem ��� �Sequential Noninterference� Suppose c

and d are well typed under � and �c� �����d� ��� If �c� ��
s
��

�c�� ���� then there exists �d�� ��� such that �d� ��
s
��

�

�d�� ���

and �c�� ������d
�� ���� And if �c� ��

s
�� ��� then there exists

�� such that �d� ��
s
��

�

�� and �����
��

Proof� By induction on the structure of c�
We begin by dealing with the case when c and d both

have type H cmd � In this case� by the Con�nement Lemma
c does not assign to any variables of type L� Therefore�

if �c� ��
s
���c�� ���� then we can let �d�� ��� be �d� �� since

�d� ��
s
��

�

�d� �� and �c�� ������d� ��� This is because c
� must

also have type H cmd by the Subject Reduction Lemma�

If� instead� the transition is �c� ��
s
����� then we can appeal

again to the Con�nement Lemma to get that neither c nor
d assigns to any variables of type L� and that there exists ��

such that �d� ��
s
��

�

���� Since �����
�� were done�

We now deal with the case when c and d do not both
have type H cmd by considering in turn the possible forms
of c�

Case x �� e� Since c and d do not both have type H cmd �
we must have c � d� and therefore c does not have
type H cmd � Hence x must have type L var and e
must have type L� So� by the Simple Security Lemma�
every identi�er in e has class L� Therefore� since �����
we have ��e� � ��e� and ��x �� ��e������x �� ��e���

Case c�	 c�� Since c and d do not both have type H cmd � d
must have the form d�	 d�� where c���d� and c���d��

So if �c�� ��
s
���c��� �

��� then by induction there ex�

ists �d��� �
�� such that �d�� ��

s
��

�

�d��� �
�� and �c��� �

����

�d��� �
��� So by Lemma ���� �d�	 d�� ��

s
��

�

�d��	 d�� �
���

And� by clause � of the de�nition of �� � we have

�c��	 c�� �
�����d

�

�	 d�� �
��� Similarly� if �c�� ��

s
����� then

by induction there exists �� such that �d�� ��
s
��

�

�� and

�����
�� Again by Lemma ���� �d�	 d�� ��

s
��

�

�d�� �
���

�We remark that the proof would break down here if while loops
were typed as in �VSI���� Under those rules� d could contain while

loops� and hence might not be assured of terminating�

�

Case if e then c� else c�� Since c and d do not both have
type H cmd � we must have c � d� and c does not have
type H cmd � Hence e � L� As above� this implies that

��e� � ��e�� So if �if e then c� else c�� ��
s
���c�� ���

then ��e� � ��e� is nonzero� so

�if e then c� else c�� ��
s
���c�� ���

And if �if e then c� else c�� ��
s
���c�� ��� then

�if e then c� else c�� ��
s
���c�� ���

Case while e do c�� Since while loops cannot have type
H cmd � we must have c � d� and e � L� Again� this im�

plies that ��e� � ��e�� So if �while e do c�� ��
s
����

then �while e do c�� ��
s
���� And if

�while e do c�� ��
s
���c�	while e do c�� ���

then

�while e do c�� ��
s
���c�	while e do c�� ���

Remark� The Sequential Noninterference theorem says
that if �c� �����d� �� and �c� �� reaches a con�guration in one
step� then �d� �� reaches an equivalent con�guration in zero
or more steps� This bound cannot be strengthened� For
example� suppose that c is c�	 c� and d is d�	 c�� where c�
and d� have type H cmd � but c� has type L cmd � Suppose
further that �c�� �� goes to �� in one step� but �d�� �� goes
to �� in �� steps� Then �c�	 c�� �� goes in one step to �c�� �

���
But �d�	 c�� �� takes �� steps to get to �c�� �

��� And we need
d� to run to completion in order to get the required program
equivalence� since c� is not equivalent to d��	 c� for any d���
under our de�nition of �� � End of Remark�

We now wish to apply the Sequential Noninterference
Theorem to establish a Concurrent Noninterference Theo�
rem� We begin with a lemma� which depends crucially on
our nondeterministic scheduling� that shows that any execu�
tion of a thread can be �lifted� to an execution of the global
system�

Lemma ��	 �Global Execution� Suppose O��� � c� If

�c� ��
s
��

k
�c�� ���� then �O� ��

g
��

k
�O�� �� c��� ���� And if

�c� ��
s
��

k
��� then �O� ��

g
��

k
�O � �� ����

Proof� By induction on k�
If k � �� then �c� �� � �c�� ���� so �O�� �� c��� ��� �

�O� ��� Hence �O� ��
g
��

�

�O�� �� c��� ����

For the inductive step� if �c� ��
s
��

k��
�c�� ���� then there

exists �c��� ���� such that �c� ��
s
��

k
�c��� ����

s
���c�� ���� By

induction� �O� ��
g
��

k
�O�� �� c���� ����� And by the second

rule �global��

�O�� �� c
���� ����

g
���O�� �� c

����� �� c
��� ����

Since O�� �� c����� �� c�� � O�� �� c��� it follows that

�O� ��
g
��

k��
�O�� �� c��� ����

The case where �c� ��
s
��

k��
�� is similar�

Remark� This lemma remains true if we assume that
scheduling is fair� since we are dealing only with �nite com�
putations here� But if we assume bounded fairness� so that
there is a �xed bound b on the number of transitions a thread
can make before another thread gets a turn� then the lemma
holds only for k � b� End of Remark�

De�nition ��� O���O� if dom�O�� � dom�O�� and for
all � � dom�O��� O������O����� Also� �O�� �����O�� �� if
O���O� and �����

Corollary ��
 �Concurrent Noninterference� Suppose
O� and O� are well typed under � and �O�� �����O�� ���

If �O�� ��
g
���O�

�� �
��� then there exists �O�

�� �
�� such that

�O�� ��
g
��

�

�O�

�� �
�� and �O�

�� �
�����O

�

�� �
���

Proof� If �O�� ��
g
���O�

�� �
��� then �by inspection of the rules

�global�� there exists � such that O���� � c and either

�� �c� ��
s
���c�� ��� and O�

� � O��� �� c��� or else

�� �c� ��
s
���� and O�

� � O� � ��

Let d � O����� Then �c� �����d� ��� since �O�� �����O�� ���
So� in the �rst case� by the Sequential Noninterference The�

orem there exists �d�� ��� such that �d� ��
s
��

�

�d�� ��� and
�c�� ������d

�� ���� Hence� by the Global Execution Lemma�

�O�� ��
g
��

�

�O��� �� d��� ���� Finally�

�O��� �� c
��� ������O��� �� d

��� ����

The second case is similar�

Let fg denote the empty object map� We can give a �nal
corollary�

Corollary ��� Suppose that O is well typed under � and

����� If �O� ��
g
��

�

�fg� ���� then there exists �� such that

�O� ��
g
��

�

�fg� ��� and �����
��

Proof� By an easy generalization of the Concurrent Non�
interference Corollary� it follows that there exists �O�� ���

such that �O� ��
g
��

�

�O�� ��� and �fg� ������O
�� ���� Then

O� � fg by de�nition of �� �

� Adding a Clock to the Language

Many languages include a system clock that can be read by
a running program	 for instance� Java includes a function
System�currentTimeMillis�� One would expect that such
a clock would have implications for secure information �ow�
since it makes timing information observable internally� In
this section� we explore this issue�

To include a clock� we use a special identi�er t� initially
�� which tells the number of transition steps that have been
made in the current program execution� We can make t
read�only by giving it either type L or H� rather than L var
orH var � We must modify the semantics of some commands
to update t appropriately	 the modi�ed transitions are given
in Figure ��

Now� if we assume t � L� then we clearly run into trouble
with the noninterference property� For example� suppose
that x � H� y � L� and c � H cmd is a command that takes ��
steps to �nish� Consider the following program� which has
just one thread�

�

�update� x � dom���

�x �� e� ��
s
����x �� ��e�� t �� ��t� � ��

�branch� ��e� nonzero

�if e then c� else c�� ��
s
���c�� ��t �� ��t� � ���

��e� � �

�if e then c� else c�� ��
s
���c�� ��t �� ��t� � ���

�loop� ��e� � �

�while e do c� ��
s
����t �� ��t� � ��

��e� nonzero

�while e do c� ��
s
���c	while e do c� ��t �� ��t� � ���

Figure �� Modi�ed transitions to maintain a clock t

if x � � then c�
if t � �� then y �� � else y �� �

Assuming that x is either � or � initially� this program copies
x into y� By checking the value of t� the program can de�
termine whether c was executed or not� which in turn tells
whether x � � or not�

But if we assume� instead� that t � H� then the above
program is ill�typed� because the branches of the second
conditional do not have type H cmd � And� indeed� if t � H�
then the proof of Theorem ��� still goes through� and so the
noninterference property is preserved�

� Other Scheduling Policies

The semantics of concurrency given by rule �global� is
purely nondeterministic	 the rule simply says that at ev�
ery step� any thread can be selected to run for a step� It
is important to understand that the noninterference results
of the last section depend crucially on this nondetermin�
ism� For example� Corollary ��� says that if ���� and there
is some way of scheduling the threads of �O� �� that leads
to termination� then there is some way of scheduling the
threads of �O� �� that leads to an equivalent result� But the
two schedules can be very di�erent� In particular� even if the
�rst schedule treats all threads equally �in the sense that it
gives each thread a roughly equal amount of CPU time�� the
second schedule might have to greatly favor one thread over
the others� Therefore� if we impose additional constraints
on the way scheduling is done� we may falsify the Global
Execution Lemma and hence the noninterference property��

For example� suppose that scheduling is done by round�
robin time slicing� with a time�slice of b steps� Let x � H
and y � L and consider the following two threads�

� Thread ��

if x � � then c�
y �� �

� Thread ��

y �� �

�Thus our situation is quite di�erent from the usual one in which
one proves the correctness of a concurrent program with respect
to a nondeterministic scheduler� There� one can immediately say
that the program is correct with respect to any scheduler that one
might care to implement� because any schedule produced by an imple	
mented scheduler could have been produced by the nondeterministic
scheduler�

Suppose further that c � H cmd is a command that takes
longer than b steps to �nish� If ��x� � �� ��x� � �� and
��y� � ��y� � �� then ����� And from �� we can terminate
in a state where y � �� but from � we cannot	 from �� we
can only terminate in a state where y � ��

In terms of our proofs� heres what is going on�

��if x � � then c�	 y �� �� ��
s
���y �� �� ���

so by the Sequential Noninterference theorem there exists ��

such that

��if x � � then c�	 y �� �� ��
s
��

�

�y �� �� ����

and ����
�� But� although �O� ��

g
���O�� �� �y �� ���� ��� it

is not the case that �O� ��
g
��

�

�O�� �� �y �� ���� ���� because
the time�slicing scheduler will not let thread � run for such
a long time without giving a turn to thread ��

Another approach to scheduling is probabilistic� One
might attempt to approximate the e�ect of rule �global�
by �ipping coins at each step to select the next thread to
run� While such an implementation is in some ways faithful
to rule �global�� the adoption of a probabilistic seman�
tics makes it possible to create probabilistic covert channels
�Gra���� which cannot be addressed without re�ning the no�
tion of noninterference� This point is discussed in more de�
tail in Section ��

To preserve noninterference in the face of an arbitrary
scheduler� it appears necessary to require the guards of con�
ditionals to have type L� If this is done� we can strengthen
the Sequential Noninterference Theorem to the following
form�

Theorem
�� �Lockstep Execution� Suppose c is well

typed under � and ����� If �c� ��
s
���c�� ���� then there

exists �� such that �c� ��
s
���c�� ��� and �����

�� And if

�c� ��
s
����� then there exists �� such that �c� ��

s
���� and

�����
��

This Lockstep Execution result is strong enough to estab�
lish Concurrent Noninterference� regardless of how schedul�
ing is done� Anything done under � can now be exactly
mirrored under �� Also� Lockstep Execution implies that
we can add a clock t and even give it type L� since program
timing now cannot depend on the values of H variables� Un�
fortunately� restricting conditionals in this way is likely to
be quite burdensome in practice�

On the other hand� it can be useful for guarding against
timing attacks� Kocher� for example� describes a timing

�

attack on RSA modular exponentiation to learn a private
key �Koc���� Such attacks are possible by merely knowing
the source code for an algorithm� Typing conditionals as
restrictively as while loops rejects code susceptible to this
kind of attack�

� A Closer Look at Noninterference

Our noninterference property basically says that the �nal
values of low variables are independent of the initial val�
ues of high variables� More precisely� it says that changing
the initial values of high variables cannot a�ect the set of
possible �nal values of low variables� Hence� observing the
�nal values of low variables cannot reveal anything about
the initial values of high variables�

But consider the following example� which is given by
McLean �McL���� Let x be a high variable whose value is
between � and ��� and let y be a low variable� Consider the
following two threads�

� Thread ��

y �� x

� Thread ��

y �� rand����

where rand���� returns a random integer between � and
����

Now� this program satis�es our noninterference property�
regardless of the value of x� the �nal value of y can be any
integer between � and ���� But this program doesnt seem
to be secure� If we were to run the program repeatedly� we
would expect a sequence of �nal values for y something like

��� ��� ��� ��� ��� ��� �� ��� � � �

and we would feel quite con�dent that �in this case� the
value of x is ���

How can this be explained� The answer is that we have
implicitly changed the semantics of our language from the
purely nondeterministic semantics of rule �global� to some
kind of probabilistic semantics� In a nondeterministic se�
mantics� outcomes are either possible or impossible� with
no further distinction� But in a probabilistic semantics�
outcomes occur according to some probability distribution�
which makes it possible to make probabilistic inferences�

In our example� if we assume that each thread has an
equal probability of being scheduled at each step and that
rand���� generates all numbers in the range � to ��� with
equal probability� then we can see that the �nal value of y
will be the initial value of x with probability ��� ���� and
will be any other number between � and ��� with probabil�
ity � ���� Hence we can be con�dent of correctly guessing
the initial value of x by running the program repeatedly and
picking the most common �nal value of y� To rule out such
probabilistic inferences� we would need a more re�ned notion
of noninterference that requires that the probability distri�
bution of the �nal value of y be independent of the initial
value of x� The program would not satisfy such a probabilis�
tic notion of noninterference� because changes to the initial
value of x do change the distribution of the �nal value of y�

Thus we can see that the appropriate formulation of the
noninterference property depends on the kind of language
being considered� In all cases� the idea is that the �nal val�
ues of low variables are independent of the initial values of

high variables� For a deterministic language� this means that
changing the initial values of high variables cannot change
the �nal values of low variables� For a nondeterministic lan�
guage� as considered in this paper� it means that changing
the initial values of high variables cannot change the set
of possible �nal values of low variables� And for a proba�
bilistic language� it means that changing the initial values
of high variables cannot change the distribution of possible
�nal values of low variables��

It can� of course� be argued that a nondeterministic se�
mantics as used in this paper is unrealistic� because any
real implementation would display probabilistic behavior�
It is perhaps worth remarking that a nondeterministic se�
mantics can be regarded as an abstraction of a probabilis�
tic semantics in which one equates �possible� with �occurs
with nonzero probability�� For instance� an implementa�
tion of rule �global� that �ips coins at each step to decide
which thread to run has the property that each thread has
a nonzero probability of being selected at each step� Indeed�
any terminating execution possible under rule �global� has
a nonzero probability of occurring in the implementation�
Therefore� Corollary ��� does hold for this implementation�
However� one has to be careful with this view of possibility�
Though the corollary assures us that� under such an im�
plementation� one can never be certain of the initial values
of high variables based on observing the �nal values of low
variables� it does not mean that one cannot guess the initial
values with high probability�

It is also worth remarking that thread � in the example
above is rejected by our type system� This suggests that
well�typed programs in our system� if given a probabilistic
semantics� might perhaps satisfy some sort of probabilistic
noninterference property� But it is easy to see that our type
system would not rule out probabilistic timing channels� For
example� suppose x is a high varible whose value is either �
or �� y is a low variable� and c is a high command that takes
a long time to execute� Consider the following two threads�

� Thread ��

if x � � then �c�c�
y �� �

� Thread ��

c�
y �� �

If thread scheduling works by �ipping a coin at each step
to decide which thread to run� then with high probability
the two threads run at about the same rate� Hence� with
high probability the value of x ends up being copied into
y� Extending our type system to deal with a probabilistic
language remains an area for future study�

Finally� it is well known that in some cases noninterfer�
ence is too restrictive� In particular� noninterference cannot
accommodate information downgrading� For example� infor�
mation is e�ectively downgraded when it is encrypted� The

�In the security literature� there have been many noninterference	
like properties proposed� Noninterference was
rst proposed by
Goguen and Meseguer �GM��� for deterministic systems� Later�
McCullough �McC��� proposed Generalized Noninterference and Re	
strictiveness for nondeterministic systems� and Gray �Gra�� Gra���
proposed P	Restrictiveness and Information Flow Security for prob	
abilistic systems� See also McLean �McL�� for a comparison of
some of these properties� and Wittbold and Johnson �WJ�� for
an information	theoretic account of possibilistic and probabilistic
noninterference�

�

problem is that ciphertext is sensitive to changes in high
cleartext� yet we would often like to treat the ciphertext as
low� This is a clear violation of noninterference �McL����

	 Related Work

Analyzing code for various security properties has a long
history� Denning �Den��� Den��� DD��� developed a form
of program certi�cation for detecting secure �ow violations
in code� It was inspired by the work of Bell and LaPadula
�BL���� Fenton �Fen���� and Lampson �Lam���� among oth�
ers� There is also the classic operating systems protection
work of Harrison� Ruzzo� and Ullman who showed that the
problem of determining whether a program� comprised of
simple primitives for updating an access matrix� leaks an
access right is undecidable �HRU���� See also �DDG����
for an excellent discussion about solvability and complexity
issues associated with formal systems for reasoning about
program security�

More recently� there is the work of He and Gligor �HG���
who describe ways to eliminate timing channels in the source
code of trusted computing bases using an automated tool�
Ban!atre� Bryce� and Le M"etayer �BBLM��� attempt to treat
secure information �ow in a nondeterministic setting	 they
give a compile�time technique for detecting �ow violations
in sequential programs�

Other more recent e�orts are more closely related to our
work in that they too attempt to characterize some sort of
security analysis as a formal system of types� Palsberg and
#rb$k �P#��� have developed a system to manage trust
in the lambda calculus� It is not clear what an appropri�
ate notion of type soundness is for their trust system� given
that explicit coercions between trusted and untrusted enti�
ties are available in the core calculus� Any suitable notion
should speak to security in some way� Abadi �Aba��� has
developed a system of typing rules for ensuring secrecy in
cryptographic protocols� These protocols are expressed in
an extension of the pi calculus called spi� Type soundness is
that of testing equivalence between two terms P� and P���
where � and �� are substitutions of values for variables and
P is a well�typed spi term� In other words� no other spi term�
called an observer� can distinguish P� from P��� Heintze
and Riecke �HR��� attempt to re�ne Dennings analysis us�
ing more detailed type structure� They also extend their
type system for a concurrent language but do not treat type
soundness in this case� Finally� Myers and Liskov �ML���
describe a decentralized approach to downgrading informa�
tion in a secure information �ow setting� but its soundness
also is not addressed� Some sort of formal justi�cation for
downgrading is needed�

�
 Conclusion

It is clear that with just ordinary thread implementations�
users can exploit seemingly innocuous features like thread
priorities and scheduling to easily build reliable covert chan�
nels� An o��the�shelf implementation of Java is more than
enough here� Furthermore� the bandwidth of such channels
is not an issue� for private keys and credit card numbers
require little bandwidth� A truly secure programming lan�
guage demands fundamental changes in language design and
an understanding of the relationship between semantics and
security�

�� Acknowledgments

This material is based upon activities supported by the Na�
tional Science Foundation under grants CCR�������� and
CCR��������� We are grateful to Mart"%n Abadi� Paul At�
tie� Nevin Heintze� John McLean� and Jon Riecke for helpful
discussions� and to Scott Smith for shepherding this paper�

References

�Aba��� Mart"%n Abadi� Secrecy by typing in crypto�
graphic protocols� In Proceedings TACS �	
�
September �����

�BBLM��� J� Ban!atre� C� Bryce� and D� Le M"etayer�
Compile�time detection of information �ow in
sequential programs� In Proceedings �rd Euro�
pean Symposium on Research in Computer Se�
curity� pages ������ Brighton� UK� November
����� Lecture Notes in Computer Science ����

�BL��� David Bell and Leonard LaPadula� Secure com�
puter systems� Mathematical foundations and
model� Technical Report M������� MITRE
Corp�� Bedford� MA� �����

�DD��� Dorothy Denning and Peter Denning� Certi��
cation of programs for secure information �ow�
Communications of the ACM� ��������������
�����

�DDG���� D� Denning� P� Denning� S� Garland� M� Harri�
son� and W� Ruzzo� Proving protection systems
safe� Technical Report CSD TR ���� Purdue
University� November �����

�Den��� Dorothy Denning� Secure Information Flow in
Computer Systems� PhD thesis� Purdue Univer�
sity� West Lafayette� IN� May �����

�Den��� Dorothy Denning� A lattice model of secure in�
formation �ow� Communications of the ACM�
�������������� �����

�Fen��� J� Fenton� Information Protection Systems�
PhD thesis� University of Cambridge� �����

�GM��� J� Goguen and J� Meseguer� Security policies
and security models� In Proceedings �	�� IEEE
Symposium on Security and Privacy� pages ���
��� Oakland� CA� �����

�GMPS��� Li Gong� Marianne Mueller� Hemma Pra�
fullchandra� and Roland Schemers� Going be�
yond the sandbox� An overview of the new se�
curity architecture in the Java Development Kit
���� In Proceedings USENIX Symposium on In�
ternet Technologies and Systems� Monterey� CA�
December �����

�Gra��� James W� Gray� III� Probabilistic interference�
In Proceedings �		� IEEE Symposium on Secu�
rity and Privacy� pages �������� Oakland� CA�
May �����

�Gra��� James W� Gray� III� Toward a mathematical
foundation for information �ow security� In
Proc� �		� IEEE Symp� on Research in Secu�
rity and Privacy� pages ������ Oakland� CA�
May �����

�

�Gun��� Carl A� Gunter� Semantics of Programming
Languages� The MIT Press� �����

�HG��� J� He and V� Gligor� Formal methods and auto�
mated tool for timing�channel identi�cation in
TCB source code� In Proceedings �nd European
Symposium on Research in Computer Security�
pages ������ November �����

�HR��� Nevin Heintze and Jon Riecke� The SLam Cal�
culus� Programming with secrecy and integrity�
In Proceedings of the �th ACM Symposium on
Principles of Programming Languages� �����

�HRU��� M� Harrison� W� Ruzzo� and J� Ullman� Protec�
tion in operating systems� Communications of
the ACM� �������������� August �����

�Jon��� Cli� B� Jones� Some practical problems and
their in�uence on semantics� In Proceedings of
the �th European Symposium on Programming�
volume ���� of Lecture Notes in Computer Sci�
ence� pages ����� Berlin� April ����� Springer�
Verlag�

�Koc��� Paul Kocher� Timing attacks on implementa�
tions of Di
e�Hellman� RSA� DSS� and other
systems� In Proceedings ��th Annual Crypto
Conference� August �����

�Lam��� Butler W� Lampson� A note on the con�ne�
ment problem� Communications of the ACM�
��������������� �����

�McC��� Daryl McCullough� Noninterference and the
Composability of Security Properties� In Pro�
ceedings �	�� IEEE Symposium on Security and
Privacy� pages �������� Oakland� CA� �����

�McL��� John McLean� Security models and information
�ow� In Proceedings �		� IEEE Symposium on
Security and Privacy� pages �������� Oakland�
CA� �����

�ML��� Andrew C� Myers and Barbara Liskov� A de�
centralized model for information �ow control�
In Proceedings of the ��th ACM Symposium on
Operating Systems Principles� October �����

�P#��� Jens Palsberg and Peter #rb$k� Trust in the
��calculus� In Proceedings �		 Static Analysis
Symposium� Lecture Notes in Computer Science
���� �����

�VS��a� Dennis Volpano and Geo�rey Smith� Elimi�
nating covert �ows with minimum typings� In
Proc� ��th IEEE Computer Security Founda�
tions Workshop� pages �������� IEEE� June
�����

�VS��b� Dennis Volpano and Geo�rey Smith� A type�
based approach to program security� In Proc�
TAPSOFT �	
� volume ���� of Lecture Notes
in Computer Science� pages �������� Springer�
Verlag� April �����

�VSI��� Dennis Volpano� Geo�rey Smith� and Cynthia
Irvine� A sound type system for secure �ow anal�
ysis� Journal of Computer Security� �����������
���� �����

�WBDF��� Dan S� Wallach� Dirk Balfanz� Drew Dean� and
Edward W� Felten� Extensible security archi�
tectures for java� Technical Report ������� De�
partment of Computer Science� Princeton Uni�
versity� April �����

�WJ��� J� Todd Wittbold and Dale M� Johnson� In�
formation �ow in nondeterministic systems� In
Proceedings �		� IEEE Computer Society Sym�
posium on Research in Security and Privacy�
pages �������� Oakland� CA� May �����

��

View publication stats

https://www.researchgate.net/publication/2526814

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

